Image reconstruction for interrupted-beam x-ray CT on diagnostic clinical scanners

Author:

Muckley Matthew JORCID,Chen Baiyu,Vahle ThomasORCID,O’Donnell Thomas,Knoll FlorianORCID,Sodickson Aaron DORCID,Sodickson Daniel KORCID,Otazo Ricardo

Abstract

Abstract Low-dose x-ray CT is a major research area with high clinical impact. Compressed sensing using view-based sparse sampling and sparsity-promoting regularization has shown promise in simulations, but these methods can be difficult to implement on diagnostic clinical CT scanners since the x-ray beam cannot be switched on and off rapidly enough. An alternative to view-based sparse sampling is interrupted-beam sparse sampling. SparseCT is a recently-proposed interrupted-beam scheme that achieves sparse sampling by blocking a portion of the beam using a multislit collimator (MSC). The use of an MSC necessitates a number of modifications to the standard compressed sensing reconstruction pipeline. In particular, we find that SparseCT reconstruction is feasible within a model-based image reconstruction framework that incorporates data fidelity weighting to consider penumbra effects and source jittering to consider the effect of partial source obstruction. Here, we present these modifications and demonstrate their application in simulations and real-world prototype scans. In simulations compared to conventional low-dose acquisitions, SparseCT is able to achieve smaller normalized root-mean square differences and higher structural similarity measures on two reduction factors. In prototype experiments, we successfully apply our reconstruction modifications and maintain image resolution at quarter-dose reduction level. The SparseCT design requires only small hardware modifications to current diagnostic clinical scanners, opening up new possibilities for CT dose reduction.

Funder

National Institute of Biomedical Imaging and Bioengineering

Publisher

IOP Publishing

Subject

Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference40 articles.

1. Ordered subsets algorithms for transmission tomography;Erdoğan;Phys. Med. Biol.,1999

2. Penalized-likelihood sinogram restoration for computed tomography;La Riviére;IEEE Trans. Med. Imaging,2006

3. Effects of sparse sampling schemes on image quality in low-dose CT;Abbas,2013

4. Iterative reconstruction methods in x-ray CT;Beister;Phys. Med.,2012

5. Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT;Bian;Phys. Med. Biol.,2010

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3