Automatic breast ultrasound (ABUS) tumor segmentation based on global and local feature fusion

Author:

Li Yanfeng,Ren Yihan,Cheng Zhanyi,Sun Jia,Pan Pan,Chen Houjin

Abstract

Abstract Accurate segmentation of tumor regions in automated breast ultrasound (ABUS) images is of paramount importance in computer-aided diagnosis system. However, the inherent diversity of tumors and the imaging interference pose great challenges to ABUS tumor segmentation. In this paper, we propose a global and local feature interaction model combined with graph fusion (GLGM), for 3D ABUS tumor segmentation. In GLGM, we construct a dual branch encoder-decoder, where both local and global features can be extracted. Besides, a global and local feature fusion module is designed, which employs the deepest semantic interaction to facilitate information exchange between local and global features. Additionally, to improve the segmentation performance for small tumors, a graph convolution-based shallow feature fusion module is designed. It exploits the shallow feature to enhance the feature expression of small tumors in both local and global domains. The proposed method is evaluated on a private ABUS dataset and a public ABUS dataset. For the private ABUS dataset, the small tumors (volume smaller than 1 cm3) account for over 50% of the entire dataset. Experimental results show that the proposed GLGM model outperforms several state-of-the-art segmentation models in 3D ABUS tumor segmentation, particularly in segmenting small tumors.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

IOP Publishing

Reference42 articles.

1. An image is worth 16 x 16 words: transformers for image recognition at scale;Alexey,2021

2. TDSC-2023: segmentation on automated 3D breast ultrasound;Allan,2023

3. Dilated densely connected U-net with uncertainty focus loss for 3D ABUS mass segmentation;Cao;Comput. Methods Programs Biomed.,2021

4. Auto-DenseUNet: searchable neural network architecture for mass segmentation in 3D automated breast ultrasound;Cao;Med. Image Anal.,2022

5. FMG-net and W-net: multigrid inspired deep learning architectures for medical imaging segmentation;Celaya,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3