Reducing the risk of hallucinations with interpretable deep learning models for low-dose CT denoising: comparative performance analysis

Author:

Patwari MayankORCID,Gutjahr Ralf,Marcus Roy,Thali Yannick,Calvarons Adria F,Raupach RainerORCID,Maier AndreasORCID

Abstract

Abstract Objective. Reducing CT radiation dose is an often proposed measure to enhance patient safety, which, however results in increased image noise, translating into degradation of clinical image quality. Several deep learning methods have been proposed for low-dose CT (LDCT) denoising. The high risks posed by possible hallucinations in clinical images necessitate methods which aid the interpretation of deep learning networks. In this study, we aim to use qualitative reader studies and quantitative radiomics studies to assess the perceived quality, signal preservation and statistical feature preservation of LDCT volumes denoised by deep learning. We aim to compare interpretable deep learning methods with classical deep neural networks in clinical denoising performance. Approach. We conducted an image quality analysis study to assess the image quality of the denoised volumes based on four criteria to assess the perceived image quality. We subsequently conduct a lesion detection/segmentation study to assess the impact of denoising on signal detectability. Finally, a radiomic analysis study was performed to observe the quantitative and statistical similarity of the denoised images to standard dose CT (SDCT) images. Main results. The use of specific deep learning based algorithms generate denoised volumes which are qualitatively inferior to SDCT volumes(p < 0.05). Contrary to previous literature, denoising the volumes did not reduce the accuracy of the segmentation (p > 0.05). The denoised volumes, in most cases, generated radiomics features which were statistically similar to those generated from SDCT volumes (p > 0.05). Significance. Our results show that the denoised volumes have a lower perceived quality than SDCT volumes. Noise and denoising do not significantly affect detectability of the abdominal lesions. Denoised volumes also contain statistically identical features to SDCT volumes.

Funder

Siemens Healthineers

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3