4D deep image prior: dynamic PET image denoising using an unsupervised four-dimensional branch convolutional neural network

Author:

Hashimoto FumioORCID,Ohba Hiroyuki,Ote KiboORCID,Kakimoto Akihiro,Tsukada Hideo,Ouchi Yasuomi

Abstract

Abstract Although convolutional neural networks (CNNs) demonstrate the superior performance in denoising positron emission tomography (PET) images, a supervised training of the CNN requires a pair of large, high-quality PET image datasets. As an unsupervised learning method, a deep image prior (DIP) has recently been proposed; it can perform denoising with only the target image. In this study, we propose an innovative procedure for the DIP approach with a four-dimensional (4D) branch CNN architecture in end-to-end training to denoise dynamic PET images. Our proposed 4D CNN architecture can be applied to end-to-end dynamic PET image denoising by introducing a feature extractor and a reconstruction branch for each time frame of the dynamic PET image. In the proposed DIP method, it is not necessary to prepare high-quality and large patient-related PET images. Instead, a subject’s own static PET image is used as additional information, dynamic PET images are treated as training labels, and denoised dynamic PET images are obtained from the CNN outputs. Both simulation with [18F]fluoro-2-deoxy-D-glucose (FDG) and preclinical data with [18F]FDG and [11C]raclopride were used to evaluate the proposed framework. The results showed that our 4D DIP framework quantitatively and qualitatively outperformed 3D DIP and other unsupervised denoising methods. The proposed 4D DIP framework thus provides a promising procedure for dynamic PET image denoising.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3