Abstract
Abstract
Objective. In the current MR-Linac online adaptive workflow, air regions on the MR images need to be manually delineated for abdominal targets, and then overridden by air density for dose calculation. Auto-delineation of these regions is desirable for speed purposes, but poses a challenge, since unlike computed tomography, they do not occupy all dark regions on the image. The purpose of this study is to develop an automated method to segment the air regions on MRI-guided adaptive radiation therapy (MRgART) of abdominal tumors. Approach. A modified ResUNet3D deep learning (DL)-based auto air delineation model was trained using 102 patients’ MR images. The MR images were acquired by a dedicated in-house sequence named ‘Air-Scan’, which is designed to generate air regions that are especially dark and accentuated. The air volumes generated by the newly developed DL model were compared with the manual air contours using geometric similarity (Dice Similarity Coefficient (DSC)), and dosimetric equivalence using Gamma index and dose-volume parameters. Main results. The average DSC agreement between the DL generated and manual air contours is 99% ± 1%. The gamma index between the dose calculations with overriding the DL versus manual air volumes with density of 0.01 is 97% ± 2% for a local gamma calculation with a tolerance of 2% and 2 mm. The dosimetric parameters from planning target volume—PTV and organs at risk—OARs were all within 1% between when DL versus manual contours were overridden by air density. The model runs in less than five seconds on a PC with 28 Core processor and NVIDIA Quadro® P2000 GPU. Significance: a DL based automated segmentation method was developed to generate air volumes on specialized abdominal MR images and generate results that are practically equivalent to the manual contouring of air volumes.
Funder
The Medical College of Wisconsin (MCW) Fotsch Foundations
NIH Clinical Center
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献