Automated deep learning auto-segmentation of air volumes for MRI-guided online adaptive radiation therapy of abdominal tumors

Author:

Ahunbay Ergun,Parchur Abdul KORCID,Xu Jiaofeng,Thill DanORCID,Paulson Eric S,Li X AllenORCID

Abstract

Abstract Objective. In the current MR-Linac online adaptive workflow, air regions on the MR images need to be manually delineated for abdominal targets, and then overridden by air density for dose calculation. Auto-delineation of these regions is desirable for speed purposes, but poses a challenge, since unlike computed tomography, they do not occupy all dark regions on the image. The purpose of this study is to develop an automated method to segment the air regions on MRI-guided adaptive radiation therapy (MRgART) of abdominal tumors. Approach. A modified ResUNet3D deep learning (DL)-based auto air delineation model was trained using 102 patients’ MR images. The MR images were acquired by a dedicated in-house sequence named ‘Air-Scan’, which is designed to generate air regions that are especially dark and accentuated. The air volumes generated by the newly developed DL model were compared with the manual air contours using geometric similarity (Dice Similarity Coefficient (DSC)), and dosimetric equivalence using Gamma index and dose-volume parameters. Main results. The average DSC agreement between the DL generated and manual air contours is 99% ± 1%. The gamma index between the dose calculations with overriding the DL versus manual air volumes with density of 0.01 is 97% ± 2% for a local gamma calculation with a tolerance of 2% and 2 mm. The dosimetric parameters from planning target volume—PTV and organs at risk—OARs were all within 1% between when DL versus manual contours were overridden by air density. The model runs in less than five seconds on a PC with 28 Core processor and NVIDIA Quadro® P2000 GPU. Significance: a DL based automated segmentation method was developed to generate air volumes on specialized abdominal MR images and generate results that are practically equivalent to the manual contouring of air volumes.

Funder

The Medical College of Wisconsin (MCW) Fotsch Foundations

NIH Clinical Center

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3