Benefits of using removable filters in dual-layer flat panel detectors

Author:

Cai Emily Y,De Caro Christian,Treb KevinORCID,Li KeORCID

Abstract

Abstract Objective. Existing dual-layer flat panel detectors (DL-FPDs) use a thin scintillator layer to preferentially detect low-energy x-rays, followed by a permanent Cu filter to absorb residual low-energy x-rays, and finally, a thicker scintillator layer to preferentially detect high-energy x-rays. The image outputs of the two scintillator layers can be jointly processed for dual-energy (DE) planar and cone-beam CT imaging. In clinical practice, a given FPD is often used for not only DE imaging but also routine single-energy (SE) imaging. With the permanent Cu layer, the total x-ray absorption is unsatisfactory for SE imaging since more than 30% of x-rays can be lost in the Cu layer. The purpose of this work was to demonstrate the benefits of using a removable filter material in DL-FPDs for SE and DE imaging applications. Approach. The proposed detector contains a removable filter between the two scintillator layers. The filter can be either a chamber filled with a liquid high-Z eff material or a removable solid filter. When DE imaging is not clinically indicated, the DL-FPD can switch to a high-efficiency SE imaging mode by retracting the filter from the inter-scintillator space. For commonly available filter materials (iodine, gadolinium, and Cu), their optimal area densities were theoretically calculated for both water-bone decomposition and water-iodine decomposition DE imaging tasks. Preliminary experimental studies were also performed to compare the SE performance of the proposed DL-FPD with the existing DL-FPD with the permanent Cu filter and study the stability of the liquid filter on a rotating gantry. Main results. The optimal filter material was found to be an iodine solution (approximately 375 mg cm−2). With this liquid filter in place, the proposed DL-FPD has equivalent or better DE imaging performance compared with the existing DL-FPD with the Cu filter. When the filter is removed from the inter-scintillator space for SE imaging, the total x-ray absorption efficiency of the proposed DL-FPD ranges from 73% (100 kVp) to 54% (140 kVp), compared with 51% (100 kVp) to 41% (140 kVp) for the existing DL-FPD with a permanent 1 mm Cu filter. Significance. The removable filter provides a boost to the total x-ray absorption efficiency of DL-FPDs for SE imaging without compromising DE imaging. This can facilitate the adoption of DL-FPDs in clinical x-ray imaging systems that usually perform more SE imaging procedures than DE imaging series.

Funder

National Cancer Institute

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference26 articles.

1. Fluoroscopically guided interventional procedures: a review of radiation effects on patients skin and hair;Balter;Radiology,2010

2. Detector for dual-energy digital radiography;Barnes;Radiology,1985

3. kV Cone-Beam CT-Based IGRT A Clinical Review;Boda-Heggemann;Strahlentherapie und Onkologie,2011

4. One-step sol-gel preparation of hydrophobic antireflective SiO2 coating on poly(methyl methacrylate) substrate;Huang;Mater. Lett.,2017

5. Single exposure, digital dual-energy subtraction x-ray ushers in a new era of diagnostic x-ray imaging;Karim;Radiol. Manage.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3