Validation of a deep learning-based material estimation model for Monte Carlo dose calculation in proton therapy

Author:

Chang Chih-Wei,Zhou Shuang,Gao Yuan,Lin Liyong,Liu Tian,Bradley Jeffrey D,Zhang Tiezhi,Zhou Jun,Yang XiaofengORCID

Abstract

Abstract Objective. Computed tomography (CT) to material property conversion dominates proton range uncertainty, impacting the quality of proton treatment planning. Physics-based and machine learning-based methods have been investigated to leverage dual-energy CT (DECT) to predict proton ranges. Recent development includes physics-informed deep learning (DL) for material property inference. This paper aims to develop a framework to validate Monte Carlo dose calculation (MCDC) using CT-based material characterization models. Approach. The proposed framework includes two experiments to validate in vivo dose and water equivalent thickness (WET) distributions using anthropomorphic and porcine phantoms. Phantoms were irradiated using anteroposterior proton beams, and the exit doses and residual ranges were measured by MatriXX PT and a multi-layer strip ionization chamber. Two pre-trained conventional and physics-informed residual networks (RN/PRN) were used for mass density inference from DECT. Additional two heuristic material conversion models using single-energy CT (SECT) and DECT were implemented for comparisons. The gamma index was used for dose comparisons with criteria of 3%/3 mm (10% dose threshold). Main results. The phantom study showed that MCDC with PRN achieved mean gamma passing rates of 95.9% and 97.8% for the anthropomorphic and porcine phantoms. The rates were 86.0% and 79.7% for MCDC with the empirical DECT model. WET analyses indicated that the mean WET variations between measurement and simulation were −1.66 mm, −2.48 mm, and −0.06 mm for MCDC using a Hounsfield look-up table with SECT and empirical and PRN models with DECT. Validation experiments indicated that MCDC with PRN achieved consistent dose and WET distributions with measurement. Significance. The proposed framework can be used to identify the optimal CT-based material characterization model for MCDC to improve proton range uncertainty. The framework can systematically verify the accuracy of proton treatment planning, and it can potentially be implemented in the treatment room to be instrumental in online adaptive treatment planning.

Funder

National Institute of Biomedical Imaging and Bioengineering

National Cancer Institute

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3