Estimation method for the anisotropic electrical conductivity of in vivo human muscles and fat between 10 kHz and 1 MHz

Author:

Kangasmaa OttoORCID,Laakso IlkkaORCID

Abstract

Abstract Objective. In low frequency dosimetry the variability in the electrical conductivity values assigned to body model tissues represents a major source of uncertainty. The aim of this study is to propose a method for estimating the conductivity of human anisotropic skeletal muscle and fat in vivo in the frequency range from 10 kHz to 1 MHz. Approach. A method based on bounded electrical impedance tomography was used. Bioimpedance measurements were performed on the legs of ten subjects. Anatomically realistic models of the legs were then created using magnetic resonance images. The inverse problem of the tissue conductivities was solved using the finite element method. The results were validated using resampling techniques. These findings were also used to study the effects of muscle anisotropy on magnetic field exposure. Main results. The estimated conductivities for anisotropic muscle were found to be in good agreement with values found in existing literature and the anisotropy was shown to decrease with increasing frequency, with the ratio of lateral to longitudinal conductivity increasing from 37% to 64%. The conductivity of fat was found to be almost a constant 0.07 S m−1 in the frequency range considered. Significance. The proposed method was shown to be a viable option when estimating in vivo conductivity of human tissue. The results can be used in numerical dosimetry calculations or as limits in future investigations studying conductivity with bioimpedance measurements.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3