Abstract
Abstract
In this study, we propose a novel approach to investigate changes in the visible tumour and surrounding tissues with the aim of identifying patterns of tumour change during radiotherapy (RT) without segmentation on the follow-up images. On-treatment cone-beam computed tomography (CBCT) images of 240 non-small cell lung cancer (NSCLC) patients who received 55 Gy of RT were included. CBCTs were automatically aligned onto planning computed tomography (planning CT) scan using a two-step rigid registration process. To explore density changes across the lung-tumour boundary, eight shells confined to the shape of the gross tumour volume (GTV) were created. The shells extended 6 mm inside and outside of the GTV border, and each shell is 1.5 mm thick. After applying intensity correction on CBCTs, the mean intensity was extracted from each shell across all CBCTs. Thereafter, linear fits were created, indicating density change over time in each shell during treatment. The slopes of all eight shells were clustered to explore patterns in the slopes that show how tumours change. Seven clusters were obtained, 97% of the patients were clustered into three groups. After visual inspection, we found that these clusters represented patients with little or no density change, progression and regression. For the three groups, the survival curves were not significantly different between the groups, p-value = 0.51. However, the results show that definite patterns of tumour change exist, suggesting that it may be possible to identify patterns of tumour changes from on-treatment CBCT images.
Subject
Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献