Unbiased TOF estimation using leading-edge discriminator and convolutional neural network trained by single-source-position waveforms

Author:

Onishi YuyaORCID,Hashimoto FumioORCID,Ote KiboORCID,Ota RyosukeORCID

Abstract

Abstract Objective. Convolutional neural networks (CNNs) are a strong tool for improving the coincidence time resolution (CTR) of time-of-flight (TOF) positron emission tomography detectors. However, several signal waveforms from multiple source positions are required for CNN training. Furthermore, there is concern that TOF estimation is biased near the edge of the training space, despite the reduced estimation variance (i.e. timing uncertainty). Approach. We propose a simple method for unbiased TOF estimation by combining a conventional leading-edge discriminator (LED) and a CNN that can be trained with waveforms collected from one source position. The proposed method estimates and corrects the time difference error calculated by the LED rather than the absolute time difference. This model can eliminate the TOF estimation bias, as the combination with the LED converts the distribution of the label data from discrete values at each position into a continuous symmetric distribution. Main results. Evaluation results using signal waveforms collected from scintillation detectors show that the proposed method can correctly estimate all source positions without bias from a single source position. Moreover, the proposed method improves the CTR of the conventional LED. Significance. We believe that the improved CTR will not only increase the signal-to-noise ratio but will also contribute significantly to a part of the direct positron emission imaging.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning-based PET image denoising and reconstruction: a review;Radiological Physics and Technology;2024-02-06

2. Advancements in Positron Emission Tomography Detectors;PET Clinics;2024-01

3. Dynamic Threshold Discriminator - Mutual Learning for Scalable Time Stamping Neural Networks;2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International Symposium on Room-Temperature Semiconductor Detectors (NSS MIC RTSD);2023-11-04

4. Label-free timing analysis of SiPM-based modularized detectors with physics-constrained deep learning;Machine Learning: Science and Technology;2023-10-30

5. PMT Waveform Timing Analysis Using Machine Learning Method;IEEE Transactions on Nuclear Science;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3