DPP: deep phase prior for parallel imaging with wave encoding

Author:

Liu Congcong,Cui Zhuo-XuORCID,Jia Sen,Cheng Jing,Liu Yuanyuan,Lin Ling,Hu Zhanqi,Xie TaofengORCID,Zhou YihangORCID,Zhu Yanjie,Liang DongORCID,Zeng Hongwu,Wang HaifengORCID

Abstract

Abstract Objective. In Magnetic Resonance (MR) parallel imaging with virtual channel-expanded Wave encoding, limitations are imposed on the ability to comprehensively and accurately characterize the background phase. These limitations are primarily attributed to the calibration process relying solely on center low-frequency Auto-Calibration Signals (ACS) data for calibration. Approach. To tackle the challenge of accurately estimating the background phase in wave encoding, a novel deep neural network model guided by deep phase priors is proposed with integrated virtual conjugate coil (VCC) extension. Concretely, within the proposed framework, the background phase is implicitly characterized by employing a carefully designed decoder convolutional neural network, leveraging the inherent characteristics of phase smoothness and compact support in the transformed domain. Furthermore, the proposed model with wave encoding benefits from additional priors, which incorporate transmission sparsity of the latent image and coil sensitivity smoothness. Main results. Ablation experiments were conducted to ascertain the proposed method’s capability to implicitly represent CSM and the background phase. Subsequently, the superiority of the proposed method is demonstrated through confidence comparisons with competing methods, employing 4-fold and 5-fold acceleration experiments. In achieving 4-fold and 5-fold acceleration, the optimal quantitative metrics (PSNR/SSIM/NMSE) are 44.1359 dB/0.9863/0.0008 (4-fold) and 41.2074/0.9846/0.0017 (5-fold), respectively. Furthermore, the generalizability of the proposed method is further validated by conducting acceleration experiments with T1, T2, T2*, and various undersampling patterns. In addition, the DPP delivered much better performance than the conventional methods by exploring accelerated phase-sensitive SWI imaging. In SWI accelerated imaging, it also surpasses the optimal competing method in terms of (PSNR/SSIM/NMSE) with 0.096%/0.009%/0.0017%. Significance. The proposed method enables precise characterization of the background phase in the integrated VCC and wave encoding framework, supported via theoretical analysis and empirical findings. Our code is available at: https://github.com/sober235/DPP.

Funder

Strategic Priority Research Program of Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3