Deep learning for head and neck semi-supervised semantic segmentation

Author:

Luan Shunyao,Ding Yi,Shao Jiakang,Zou Bing,Yu Xiao,Qin Nannan,Zhu BenpengORCID,Wei Wei,Xue Xudong

Abstract

Abstract Objective. Radiation therapy (RT) represents a prevalent therapeutic modality for head and neck (H&N) cancer. A crucial phase in RT planning involves the precise delineation of organs-at-risks (OARs), employing computed tomography (CT) scans. Nevertheless, the manual delineation of OARs is a labor-intensive process, necessitating individual scrutiny of each CT image slice, not to mention that a standard CT scan comprises hundreds of such slices. Furthermore, there is a significant domain shift between different institutions’ H&N data, which makes traditional semi-supervised learning strategies susceptible to confirmation bias. Therefore, effectively using unlabeled datasets to support annotated datasets for model training has become a critical issue for preventing domain shift and confirmation bias. Approach. In this work, we proposed an innovative cross-domain orthogon-based-perspective consistency (CD-OPC) strategy within a two-branch collaborative training framework, which compels the two sub-networks to acquire valuable features from unrelated perspectives. More specifically, a novel generative pretext task cross-domain prediction (CDP) was designed for learning inherent properties of CT images. Then this prior knowledge was utilized to promote the independent learning of distinct features by the two sub-networks from identical inputs, thereby enhancing the perceptual capabilities of the sub-networks through orthogon-based pseudo-labeling knowledge transfer. Main results. Our CD-OPC model was trained on H&N datasets from nine different institutions, and validated on the four local intuitions’ H&N datasets. Among all datasets CD-OPC achieved more advanced performance than other semi-supervised semantic segmentation algorithms. Significance. The CD-OPC method successfully mitigates domain shift and prevents network collapse. In addition, it enhances the network’s perceptual abilities, and generates more reliable predictions, thereby further addressing the confirmation bias issue.

Funder

Health Commission of Hubei Province

Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

IOP Publishing

Reference54 articles.

1. CT simulation for radiotherapy treatment planning;Aird;The Br. J. Radiol.,2002

2. Semi-supervised semantic segmentation with pixel-level contrastive learning from a class-wise memory bank;Alonso,2021

3. Exploring simple siamese representation learning;Chen,2021

4. Semi-supervised semantic segmentation with cross pseudo supervision;Chen,2021

5. Head and neck cancer;Chow;New Engl. J. Med.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3