Robust treatment planning with 4D intensity modulated carbon ion therapy for multiple targets in stage IV non-small cell lung cancer

Author:

Wolf M,Anderle K,Durante MORCID,Graeff CORCID

Abstract

Abstract Intensity modulated particle therapy (IMPT) with carbon ions can generate highly conformal treatment plans; however, IMPT is limited in robustness against range and positioning uncertainty. This is particularly true for moving targets, even though all motion states of a 4DCT are considered in 4D-IMPT. Here, we expand 4D-IMPT to include robust non-linear RBE-weighted optimization to explore its potential in improving plan robustness and sparing critical organs. In this study, robust 4D-optimization—based on worst-case optimization on 9 scenarios—was compared to conventional 4D-optimization with PTV margins using 4D dose calculation and robustness analysis for 21 uncertainty scenarios. Slice-by-slice rescanning was used for motion mitigation. Both 4D-optimization strategies were tested on a cohort of 8 multi-lesion lung cancer patients with the goal of prioritizing OAR sparing in a hypofractionated treatment plan. Planning objectives were to keep the OAR volume doses below corresponding limits while simultaneously achieve CTV coverage with D95% ≥ 95 %. For the conventional plans, average D95% was at 98.7% which fulfilled the target objective in 83.2% of scenarios. For the robust plans, average D95% was reduced to 97.6% which still fulfilled the target objective in 80.7% of cases, but led to significantly improved overall OAR sparing: Volume doses were below the limits in 96.2% of cases for the conventional and 99.5% for the robust plans. When considering the particularly critical smaller airways only, fulfillment rates could be increased from 76.2% to 96% for the robust plans. This study has shown that plan robustness of 4D-IMPT could be improved by using robust 4D-optimization, offering greater control over uncertainties in the actual delivered dose. In some cases, this required sacrificing target coverage for the benefit of better OAR sparing.

Publisher

IOP Publishing

Subject

Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3