ABPO-TVSCAD: alternating Bregman proximity operators approach based on TVSCAD regularization for bioluminescence tomography

Author:

Chen Yi,Du Mengfei,Li Weitong,Su Linzhi,Yi Huangjian,Zhao Fengjun,Li Kang,Wang Lin,Cao XinORCID

Abstract

Abstract Objective. Bioluminescence tomography (BLT) is a promising non-invasive optical medical imaging technique, which can visualize and quantitatively analyze the distribution of tumor cells in living tissues. However, due to the influence of photon scattering effect and ill-conditioned inverse problem, the reconstruction result is unsatisfactory. The purpose of this study is to improve the reconstruction performance of BLT. Approach. An alternating Bregman proximity operators (ABPO) method based on TVSCAD regularization is proposed for BLT reconstruction. TVSCAD combines the anisotropic total variation (TV) regularization constraints and the non-convex smoothly clipped absolute deviation (SCAD) penalty constraints, to make a trade-off between the sparsity and edge preservation of the source. ABPO approach is used to solve the TVSCAD model (ABPO-TVSCAD for short). In addition, to accelerate the convergence speed of the ABPO, we adapt the strategy of shrinking the permission source region, which further improves the performance of ABPO-TVSCAD. Main results. The results of numerical simulations and in vivo xenograft mouse experiment show that our proposed method achieved superior accuracy in spatial localization and morphological reconstruction of bioluminescent source. Significance. ABPO-TVSCAD is an effective and robust reconstruction method for BLT, and we hope that this method can promote the development of optical molecular tomography.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Young Talent Support Program of the Shaanxi Association for Science and Technology

National Key Research and Development Program of China

Natural Science Foundation of Shaanxi Province

Key Research and Development Program of Shaanxi Province

Major research and development project of Qinghai

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3