Simultaneous photon counting and charge integrating for pulse pile-up correction in paralyzable photon counting detectors

Author:

Treb KevinORCID,Radtke Jeff,Culberson Wesley S,Li KeORCID

Abstract

Abstract Objective. In photon counting detectors (PCDs), electric pulses induced by two or more x-ray photons can pile up and result in count losses when their temporal separation is less than the detector dead time. The correction of pulse pile-up-induced count loss is particularly difficult for paralyzable PCDs since a given value of recorded counts can correspond to two different values of true photon interactions. In contrast, charge (energy) integrating detectors work by integrating collected electric charge induced by x-rays over time and do not suffer from pile-up losses. This work introduces an inexpensive readout circuit element to the circuits of PCDs to simultaneously collect time-integrated charge to correct pile-up-induced count losses. Approach. Prototype electronics were constructed to collect time-integrated charges simultaneously with photon counts. A splitter was used to feed the electric signal in parallel to both a digital counter and a charge integrator. After recording PCD counts and integrating collected charge, a lookup table can be generated to map raw counts in the total- and high-energy bins and total charge to estimate pile-up-free true counts. Proof-of-concept imaging experiments were performed with a CdTe-based PCD array to test this method. Main results. The proposed electronics successfully recorded photon counts and time-integrated charge simultaneously, and whereas photon counts exhibited paralyzable pulse pile-up, time-integrated charge using the same electric signal as the counts measurement was linear with x-ray flux. With the proposed correction, paralyzable PCD counts became linear with input flux for both total- and high-energy bins. At high flux levels, uncorrected post-log measurements of PMMA objects severely overestimated radiological path lengths for both energy bins. After the proposed correction, the non-monotonic measurements again became linear with flux and accurately represented the true radiological path lengths. No impact on the spatial resolution was observed after the proposed correction in images of a line-pair test pattern. Significance. Time-integrated charge can be used to correct for pulse pile-up in paralyzable PCDs where analytical solutions may be difficult to use, and integrated charge can be collected simultaneously with counts using inexpensive electronics.

Funder

National Cancer Institute

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3