Predicting dice similarity coefficient of deformably registered contours using Siamese neural network

Author:

Yeap Ping Lin,Wong Yun Ming,Ong Ashley Li Kuan,Tuan Jeffrey Kit Loong,Pang Eric Pei PingORCID,Park Sung Yong,Lee James Cheow Lei,Tan Hong QiORCID

Abstract

Abstract Objective. Automatic deformable image registration (DIR) is a critical step in adaptive radiotherapy. Manually delineated organs-at-risk (OARs) contours on planning CT (pCT) scans are deformably registered onto daily cone-beam CT (CBCT) scans for delivered dose accumulation. However, evaluation of registered contours requires human assessment, which is time-consuming and subjects to high inter-observer variability. This work proposes a deep learning model that allows accurate prediction of Dice similarity coefficients (DSC) of registered contours in prostate radiotherapy. Approach. Our dataset comprises 20 prostate cancer patients with 37–39 daily CBCT scans each. The pCT scans and planning contours were deformably registered to each corresponding CBCT scan to generate virtual CT (vCT) scans and registered contours. The DSC score, which is a common contour-based validation metric for registration quality, between the registered and manual contours were computed. A Siamese neural network was trained on the vCT-CBCT image pairs to predict DSC. To assess the performance of the model, the root mean squared error (RMSE) between the actual and predicted DSC were computed. Main results. The model showed promising results for predicting DSC, giving RMSE of 0.070, 0.079 and 0.118 for rectum, prostate, and bladder respectively on the holdout test set. Clinically, a low RMSE implies that the predicted DSC can be reliably used to determine if further DIR assessment from physicians is required. Considering the event where a registered contour is classified as poor if its DSC is below 0.6 and good otherwise, the model achieves an accuracy of 92% for the rectum. A sensitivity of 0.97 suggests that the model can correctly identify 97% of poorly registered contours, allowing manual assessment of DIR to be triggered. Significance. We propose a neural network capable of accurately predicting DSC of deformably registered OAR contours, which can be used to evaluate eligibility for plan adaptation.

Funder

Duke-NUS Oncology Academic Program Goh Foundation Proton Research Programme

Clinical & Systems Innovation Support – Innovation Seed Grant

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3