Abstract
Abstract
Many of the current techniques in transient elastography, such as shear wave elastography (SWE) assume a dominant planar shear wave propagating in an infinite medium. This underlying assumption, however, can be easily violated in real scenarios in vivo, leading to image artifacts and reconstruction errors. Other approaches that are not bound to planar shear wave assumption, such solutions based on the partial differential equation, can potentially overcome the shortcomings of the conventional SWE. The main objective of this paper is to demonstrate the advantages of the modified error in constitutive equations (MECE) formulation with total variation regularization (MECE + TV) over SWE in reconstructing the elastic moduli of different tissue-mimicking phantoms. Experiments were conducted on phantoms with inclusions of well-defined shapes to study the reconstruction of specific features relevant to practical applications. We compared the performances of MECE + TV and SWE in terms of quantitative metrics to estimate reconstruction accuracy, inclusion shape recovery, edge preservation and edge sharpness, inclusion size representation, and shear elasticity and contrast accuracies. The results indicate that the MECE + TV approach outperforms SWE based on several of these metrics. It is concluded that, with further development, the proposed method may offer elastography reconstructions that are superior to SWE in clinical applications.
Funder
National Cancer Institute
Iran National Science Foundation
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献