Fitting Monte Carlo simulation results with an empirical model of megavoltage x-ray beams for rapid depth dose calculations in water

Author:

O’Brien AllisonORCID,Abergel Rebecca JORCID

Abstract

Abstract Objective. The purpose of this study was to assess a method of accelerating Monte Carlo simulations for modeling depth dose distributions from megavoltage x-ray beams by fitting them to an empirically-derived function. Approach. Using Geant4, multiple simulations of a typical medical linear accelerator beam in water and in water with an air cavity were conducted with varying numbers of initial electrons. The resulting percent depth dose curves were compared to published data from actual linear accelerator measurements. Two methods were employed to reduce computation time for this modeling process. First, an empirical function derived from measurements at a particular linear accelerator energy, source-to-surface distance, and field size was used to directly fit the simulated data. Second, a linear regression was performed to predict the empirical function’s parameters for simulations with more initial electrons. Main results. Fitting simulated depth dose curves with the empirical function yielded significant improvements in either accuracy or computation time, corresponding to the two methods described. When compared to published measurements, the maximum error for the largest simulation was 5.58%, which was reduced to 2.01% with the best fit of the function. Fitting the empirical function around the air cavity heterogeneity resulted in errors less than 2.5% at the interfaces. The linear regression prediction modestly improved the same simulation with a maximum error of 4.22%, while reducing the required computation time from 66.53 h to 43.75 h. Significance. This study demonstrates the effective use of empirical functions to expedite Monte Carlo simulations for a range of applications from radiation protection to food sterilization. These results are particularly impactful in radiation therapy treatment planning, where time and accuracy are especially valuable. Employing these methods may improve patient outcomes by ensuring that dose delivery more accurately matches the prescription or by shortening the preparation time before treatment in Monte Carlo-based treatment planning systems.

Funder

Agriculture and food research initiative

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3