Source-detector trajectory optimization in cone-beam computed tomography: a comprehensive review on today’s state-of-the-art

Author:

Hatamikia SORCID,Biguri AORCID,Herl G,Kronreif G,Reynolds TORCID,Kettenbach J,Russ TORCID,Tersol A,Maier AORCID,Figl M,Siewerdsen J H,Birkfellner W

Abstract

Abstract Cone-beam computed tomography (CBCT) imaging is becoming increasingly important for a wide range of applications such as image-guided surgery, image-guided radiation therapy as well as diagnostic imaging such as breast and orthopaedic imaging. The potential benefits of non-circular source-detector trajectories was recognized in early work to improve the completeness of CBCT sampling and extend the field of view (FOV). Another important feature of interventional imaging is that prior knowledge of patient anatomy such as a preoperative CBCT or prior CT is commonly available. This provides the opportunity to integrate such prior information into the image acquisition process by customized CBCT source-detector trajectories. Such customized trajectories can be designed in order to optimize task-specific imaging performance, providing intervention or patient-specific imaging settings. The recently developed robotic CBCT C-arms as well as novel multi-source CBCT imaging systems with additional degrees of freedom provide the possibility to largely expand the scanning geometries beyond the conventional circular source-detector trajectory. This recent development has inspired the research community to innovate enhanced image quality by modifying image geometry, as opposed to hardware or algorithms. The recently proposed techniques in this field facilitate image quality improvement, FOV extension, radiation dose reduction, metal artifact reduction as well as 3D imaging under kinematic constraints. Because of the great practical value and the increasing importance of CBCT imaging in image-guided therapy for clinical and preclinical applications as well as in industry, this paper focuses on the review and discussion of the available literature in the CBCT trajectory optimization field. To the best of our knowledge, this paper is the first study that provides an exhaustive literature review regarding customized CBCT algorithms and tries to update the community with the clarification of in-depth information on the current progress and future trends.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference145 articles.

1. Optimization of radiation exposure and image quality of the cone-beam o-arm intraoperative imaging system in spinal surgery;Abul-Kasim;J. Spinal Disorders Tech.,2012

2. A tool for reducing cone-beam artifacts in computed tomography data;Ametova,2017

3. Visual optimality and stability analysis of 3DCT scan positions;Amirkhanov;IEEE Trans. Visual Comput. Graphics,2010

4. Model observers for assessment of image quality;Barrett;Proc. Natl. Acad. Sci.,1993

5. Scan time reduction by fewer projections-an approach for part-specific acquisition trajectories;Bauer,2020

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3