Microdosimetric investigation for multi-ion therapy by means of silicon on insulator (SOI) microdosimeter

Author:

Sakata DousatsuORCID,Lee Sung HyunORCID,Tran Linh TORCID,Pan Vladimir,Nakaji TakuORCID,Mizuno Hideyuki,Kok Angela,Povoli MarcoORCID,Rosenfeld AnatolyORCID,Inaniwa TakuORCID

Abstract

Abstract Objective. Ion radiotherapy with protons or carbon ions is one of the most advanced clinical methods for cancer treatment. To further improve the local tumor control, ion radiotherapy using multiple ion species has been investigated. Due to complexity of dose distributions delivered by multi-ion therapy in a tumor, a validation strategy for the planned treatment efficacy must be established that can be potentially used in the quality assurance (QA) protocol for the multi-ion treatment plans. In previous work, we demonstrated that the microdosimetric approach using the silicon on insulator (SOI) microdosimeter is practical for validating cell surviving fraction (SF) of MIA PaCa-2 cells in the independent fields of helium, carbon, oxygen, and neon ion beams. Approach. This paper extends the previous study, and we demonstrate a microdosimetry based approach as a pilot study to build the QA protocol in the multi-ion therapy predicting the cell SF along the spread-out Bragg peak obtained by combined irradiations of He+O and C+Ne ions. Across the study, the SOI microdosimeter system MicroPlus was used for measurement of the lineal energy in individual ion fields followed by deriving the lineal energy of combined ion fields delivered by a pencil beam scanning system at HIMAC. Main results. The predicted cell SF based on derived lineal energy and dose in the combined fields was in good agreement with the planned cell SF by our in-house treatment planning system. Significance. The presented results indicated the potential benefit of the SOI microdosimeter system MicroPlus as the QA system in the multi-ion radiotherapy.

Funder

Japan Science and Technology Corporation

Japan Society for the Promotion of Science

ARC Grant Number:

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference31 articles.

1. Geant4a simulation toolkit;Agostinelli;Nucl. Instrum. Methods Phys. Res. A,2003

2. Geant4 developments and applications;Allison;IEEE Trans. Nucl. Sci.,2006

3. Recent developments in geant4;Allison;Nucl. Instrum. Methods Phys. Res. A,2016

4. Silicon microdosimetry in hadron therapy using geant4;Bolst,2019

5. Correction factors to convert microdosimetry measurements in silicon to tissue in 12c ion therapy;Bolst;Phys. Med. Biol.,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3