Investigation of hardware and software techniques to enhance the characteristics of focused ultrasound (FUS) spectra

Author:

Smith MichaelORCID,Khan Sonia,Curiel LauraORCID

Abstract

Abstract Objective. Microbubble cavitation generated by focused ultrasound (FUS) can induce safe blood-brain-barrier (BBB) opening allowing therapeutic drug passage. Spectral changes in the hydrophone sensor signal are currently used to distinguish stable cavitation from inertial cavitation that can damage the BBB. Gibbs’ ringing, peak intensity loss and peak width increase are well-known distortions evident when using the discrete Fourier transform (DFT) to transform data containing a few hundred points. We investigate overcoming the fact that FUS time signals (10 ms providing 312 500 points sampled at 32 ns intervals) can generate such sharp spectral peaks that variations in their DFT-related distortions can significantly impact the values of the key metrics used for cavitation characterization. Approach. We introduce low-pass filter hardware to improve how the analogue to digital convertor handles high-frequency noise components and the orders of magnitude differences between FUS harmonic intensities. We investigate the enhanced FUS spectral stability and resolution obtained from a new technique, physical sparsification (PH-SP), customized to the a-priori information that all key FUS components are harmonically related. Results are compared with standard DFT optimizations involving time data windowing and Fourier interpolation. Main results. A new simulation model showed peak intensity, widths and metrics modified by small changes in the transformed signal’s length when removing the noisy starting transient of the FUS hydrophone signal or following minor excitation frequency or sampling rate adjustments. 25%–60% area-under-the-curve changes occurred in phantom studies at different pressure levels. Spectral peak sharpness was best optimized and stabilized with PH-SP. Significance. Special FUS characteristics mean starting transients and minor variations in experimental procedures lead to significant changes in the spectral metrics used to monitor cavitation levels. Customizing PH-SP to these characteristics led to sharper, more stable spectra with the potential to track the impact of microbubble environment changes.

Funder

Natural Sciences and Engineering Research Council of Canada

Analog Devices

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference38 articles.

1. Total variation assisted Fourier shift manipulation to remove Gibbs’ artifacts in compressive sensing techniques;Adibpour,2016

2. High quality zoomed MR images;Constable;J. Comput. Assist. Tomogr.,1989

3. Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU);Coussios;Int. J. Hyperth.,2007

4. Focused ultrasound disruption of the blood brain barrier: a new frontier for therapeutic delivery in molecular neuro-oncology;Etame;Natl. Inst. Health,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3