Non-coplanar lung SABR treatments delivered with a gantry-mounted x-ray tube

Author:

O’Connell JerichoORCID,Weil Michael D,Bazalova-Carter MagdalenaORCID

Abstract

Abstract Objective. To create two non-coplanar, stereotactic ablative radiotherapy (SABR) lung patient treatment plans compliant with the radiation therapy oncology group (RTOG) 0813 dosimetric criteria using a simple, isocentric, therapy with kilovoltage arcs (SITKA) system designed to provide low cost external radiotherapy treatments for low- and middle-income countries (LMICs). Approach. A treatment machine design has been proposed featuring a 320 kVp x-ray tube mounted on a gantry. A deep learning cone-beam CT (CBCT) to synthetic CT (sCT) method was employed to remove the additional cost of planning CTs. A novel inverse treatment planning approach using GPU backprojection was used to create a highly non-coplanar treatment plan with circular beam shapes generated by an iris collimator. Treatments were planned and simulated using the TOPAS Monte Carlo (MC) code for two lung patients. Dose distributions were compared to 6 MV volumetric modulated arc therapy (VMAT) planned in Eclipse on the same cases for a Truebeam linac as well as obeying the RTOG 0813 protocols for lung SABR treatments with a prescribed dose of 50 Gy. Main results. The low-cost SITKA treatments were compliant with all RTOG 0813 dosimetric criteria. SITKA treatments showed, on average, a 6.7 and 4.9 Gy reduction of the maximum dose in soft tissue organs at risk (OARs) as compared to VMAT, for the two patients respectively. This was accompanied by a small increase in the mean dose of 0.17 and 0.30 Gy in soft tissue OARs. Significance. The proposed SITKA system offers a maximally low-cost, effective alternative to conventional radiotherapy systems for lung cancer patients, particularly in low-income countries. The system’s non-coplanar, isocentric approach, coupled with the deep learning CBCT to sCT and GPU backprojection-based inverse treatment planning, offers lower maximum doses in OARs and comparable conformity to VMAT plans at a fraction of the cost of conventional radiotherapy.

Funder

Sirius Medicine LLC

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3