Suppressing label noise in medical image classification using mixup attention and self-supervised learning

Author:

Gao Mengdi,Jiang HongyangORCID,Hu Yan,Ren Qiushi,Xie Zhaoheng,Liu Jiang

Abstract

Abstract Deep neural networks (DNNs) have been widely applied in medical image classification and achieve remarkable classification performance. These achievements heavily depend on large-scale accurately annotated training data. However, label noise is inevitably introduced in the medical image annotation, as the labeling process heavily relies on the expertise and experience of annotators. Meanwhile, DNNs suffer from overfitting noisy labels, degrading the performance of models. Therefore, in this work, we innovatively devise a noise-robust training approach to mitigate the adverse effects of noisy labels in medical image classification. Specifically, we incorporate contrastive learning and intra-group mixup attention strategies into vanilla supervised learning. The contrastive learning for feature extractor helps to enhance visual representation of DNNs. The intra-group mixup attention module constructs groups and assigns self-attention weights for group-wise samples, and subsequently interpolates massive noisy-suppressed samples through weighted mixup operation. We conduct comparative experiments on both synthetic and real-world noisy medical datasets under various noise levels. Rigorous experiments validate that our noise-robust method with contrastive learning and mixup attention can effectively handle with label noise, and is superior to state-of-the-art methods. An ablation study also shows that both components contribute to boost model performance. The proposed method demonstrates its capability of curb label noise and has certain potential toward real-world clinic applications.

Publisher

IOP Publishing

Reference36 articles.

1. A dataset of microscopic peripheral blood cell images for development of automatic recognition systems;Acevedo;Data Brief,2020

2. Pseudo-labeling and confirmation bias in deep semi-supervised learning;Arazo,2020

3. Computer-aided diagnosis in the era of deep learning;Chan;Med. Phys.,2020

4. Active bias: training more accurate neural networks by emphasizing high variance samples;Chang;Adv. Neural Inf. Process. Syst.,2017

5. Compressing features for learning with noisy labels;Chen;IEEE Trans Neural Netw. Learn. Syst.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3