Lung cancer subtype classification using histopathological images based on weakly supervised multi-instance learning

Author:

Zhao LuORCID,Xu Xiaowei,Hou Runping,Zhao WangyuanORCID,Zhong Hai,Teng Haohua,Han Yuchen,Fu Xiaolong,Sun Jianqi,Zhao JunORCID

Abstract

Abstract Objective. Subtype classification plays a guiding role in the clinical diagnosis and treatment of non-small-cell lung cancer (NSCLC). However, due to the gigapixel of whole slide images (WSIs) and the absence of definitive morphological features, most automatic subtype classification methods for NSCLC require manually delineating the regions of interest (ROIs) on WSIs. Approach. In this paper, a weakly supervised framework is proposed for accurate subtype classification while freeing pathologists from pixel-level annotation. With respect to the characteristics of histopathological images, we design a two-stage structure with ROI localization and subtype classification. We first develop a method called multi-resolution expectation-maximization convolutional neural network (MR-EM-CNN) to locate ROIs for subsequent subtype classification. The EM algorithm is introduced to select the discriminative image patches for training a patch-wise network, with only WSI-wise labels available. A multi-resolution mechanism is designed for fine localization, similar to the coarse-to-fine process of manual pathological analysis. In the second stage, we build a novel hierarchical attention multi-scale network (HMS) for subtype classification. HMS can capture multi-scale features flexibly driven by the attention module and implement hierarchical features interaction. Results. Experimental results on the 1002-patient Cancer Genome Atlas dataset achieved an AUC of 0.9602 in the ROI localization and an AUC of 0.9671 for subtype classification. Significance. The proposed method shows superiority compared with other algorithms in the subtype classification of NSCLC. The proposed framework can also be extended to other classification tasks with WSIs.

Funder

National Natural Science Foundation of China

the Shanghai Hospital Development Center Clinical Science and Technology Innovation project

the National Key R&D Program of China

the National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3