A feasibility study of enhanced prompt gamma imaging for range verification in proton therapy using deep learning

Author:

Jiang Zhuoran,Polf Jerimy C,Barajas Carlos A,Gobbert Matthias K,Ren Lei

Abstract

Abstract Background and objective. Range uncertainty is a major concern affecting the delivery precision in proton therapy. The Compton camera (CC)-based prompt-gamma (PG) imaging is a promising technique to provide 3D in vivo range verification. However, the conventional back-projected PG images suffer from severe distortions due to the limited view of the CC, significantly limiting its clinical utility. Deep learning has demonstrated effectiveness in enhancing medical images from limited-view measurements. But different from other medical images with abundant anatomical structures, the PGs emitted along the path of a proton pencil beam take up an extremely low portion of the 3D image space, presenting both the attention and the imbalance challenge for deep learning. To solve these issues, we proposed a two-tier deep learning-based method with a novel weighted axis-projection loss to generate precise 3D PG images to achieve accurate proton range verification. Materials and methods: the proposed method consists of two models: first, a localization model is trained to define a region-of-interest (ROI) in the distorted back-projected PG image that contains the proton pencil beam; second, an enhancement model is trained to restore the true PG emissions with additional attention on the ROI. In this study, we simulated 54 proton pencil beams (energy range: 75–125 MeV, dose level: 1 × 109 protons/beam and 3 × 108 protons/beam) delivered at clinical dose rates (20 kMU min−1 and 180 kMU min−1) in a tissue-equivalent phantom using Monte-Carlo (MC). PG detection with a CC was simulated using the MC-Plus-Detector-Effects model. Images were reconstructed using the kernel-weighted-back-projection algorithm, and were then enhanced by the proposed method. Results. The method effectively restored the 3D shape of the PG images with the proton pencil beam range clearly visible in all testing cases. Range errors were within 2 pixels (4 mm) in all directions in most cases at a higher dose level. The proposed method is fully automatic, and the enhancement takes only ∼0.26 s. Significance. Overall, this preliminary study demonstrated the feasibility of the proposed method to generate accurate 3D PG images using a deep learning framework, providing a powerful tool for high-precision in vivo range verification of proton therapy.

Funder

National Science Foundation

National Institutes of Health

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3