Radial dependence of ionization clustering around a gold nanoparticle irradiated by X-rays under charged particle equilibrium

Author:

Thomas LeoORCID,Schwarze MiriamORCID,Rabus HansORCID

Abstract

Abstract Objective. This work explores the enhancement of ionization clustering and its radial dependence around a gold nanoparticle (NP), indicative of the induction of DNA lesions, a potential trigger for cell-death. Approach. Monte Carlo track structure simulations were performed to determine (a) the spectral fluence of incident photons and electrons in water around a gold NP under charged particle equilibrium conditions and (b) the density of ionization clusters produced on average as well as conditional on the occurrence of at least one interaction in the NP using Associated Volume Clustering. Absorbed dose was determined for comparison with a recent benchmark intercomparison. Reported quantities are normalized to primary fluence, allowing to establish a connection to macroscopic dosimetric quantities. Main results. The modification of the electron spectral fluence by the gold NP is minor and mainly occurs at low energies. The net fluence of electrons emitted from the NP is dominated by electrons resulting from photon interactions. Similar to the known dose enhancement, increased ionization clustering is limited to a distance from the NP surface of up to 200 nm . The number of clusters per energy imparted is increased at distances of up to 150 nm , and accordingly the enhancement in clustering notably surpasses that of dose enhancement. Smaller NPs cause noticeable peaks in the conditional frequency of clusters between 50 nm 100 nm from the NP surface. Significance. This work shows that low energy electrons emitted by NPs lead to an increase of ionization clustering in their vicinity exceeding that of energy imparted. While the electron component of the radiation field plays an important role in determining the background contribution to ionization clustering and energy imparted, the dosimetric effects of NPs are governed by the interplay of secondary electron production by photon interaction and their ability to leave the NP.

Funder

German Federal Minstery of Econimic Affairs and Climate Action

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3