Author:
Hu Panpan,Li Xiaoyang,Liu Wei,Yan Bing,Xue Xudong,Yang Fei,Ford John Chetley,Portelance Lorraine,Yang Yidong
Abstract
Abstract
Objective. We investigated dosimetry effect of gating latency in cine magnetic resonance image (cine MRI) guided breath-hold pancreatic cancer radiotherapy. Approach. The gating latency was calculated based on cine MRI obtained from 17 patients who received MRI guided radiotherapy. Because of the cine MRI-related latency, beam overshoot occurs when beam remains on while the tracking target already moves out of the target boundary. The number of beam on/off events was calculated from the cine MRI data. We generated both IMRT and VMAT plans for all 17 patients using 33 Gy prescription, and created motion plans by applying isocenter shift that corresponds to motion-induced tumor displacement. The GTV and PTV coverage and dose to nearby critical structures were compared between the motion and original plan to evaluate the dosimetry change caused by cine MRI latency. Main results. The time ratio of cine MRI imaging latency over the treatment duration is 6.6 ± 3.1%, the mean and median percentage of beam-on events <4 s are 67.0 ± 14.3% and 66.6%. When a gating boundary of 4 mm and a target-out threshold of 5% is used, there is no significant difference for GTV V33Gy between the motion and original plan (p = 0.861 and 0.397 for IMRT and VMAT planning techniques, respectively). However, the PTV V33Gy and stomach Dmax for the motion plans are significantly lower; duodenum V12.5 Gy and V18Gy are significantly higher when compared with the original plans, for both IMRT and VMAT planning techniques. Significance. The cine MRI gating latency can significantly decrease the dose delivered to the PTV, and increase the dose to the nearby critical structures. However, no significant difference is observed for the GTV coverage. The dosimetry impact can be mitigated by implementing additional beam-on control techniques which reduces unnecessary beam on events and/or by using faster cine MRI sequences which reduces the latency period.
Funder
Fundamental Research Funds for the Central Universities
Anhui Provincial-level S&T Megaprojects
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献