Development of a GPU-accelerated Monte Carlo dose calculation module for nuclear medicine, ARCHER-NM: demonstration for a PET/CT imaging procedure

Author:

Peng ZhaoORCID,Lu Yu,Xu Yao,Li Yongzhe,Cheng Bo,Ni Ming,Chen Zhi,Pei Xi,Xie Qiang,Wang Shicun,Xu X George

Abstract

Abstract Objective. This paper describes the development and validation of a GPU-accelerated Monte Carlo (MC) dose computing module dedicated to organ dose calculations of individual patients undergoing nuclear medicine (NM) internal radiation exposures involving PET/CT examination. Approach. This new module extends the more-than-10-years-long ARCHER project that developed a GPU-accelerated MC dose engine by adding dedicated NM source-definition features. To validate the code, we compared dose distributions from the point ion source, including 18F, 11C, 15O, and 68Ga, calculated for a water phantom against a well-tested MC code, GATE. To demonstrate the clinical utility and advantage of ARCHER-NM, one set of 18F-FDG PET/CT data for an adult male NM patient is calculated using the new code. Radiosensitive organs in the CT dataset are segmented using a CNN-based tool called DeepViewer. The PET image intensity maps are converted to radioactivity distributions to allow for MC radiation transport dose calculations at the voxel level. The dose rate maps and corresponding statistical uncertainties were calculated at the acquisition time of PET image. Main results. The water-phantom results show excellent agreement, suggesting that the radiation physics module in the new NM code is adequate. The dose rate results of the 18F-FDG PET imaging patient show that ARCHER-NM’s results agree very well with those of the GATE within −2.45% to 2.58% (for a total of 28 organs considered in this study). Most impressively, ARCHER-NM obtains such results in 22 s while it takes GATE about 180 min for the same number of 5 × 108 simulated decay events. Significance. This is the first study presenting GPU-accelerated patient-specific MC internal radiation dose rate calculations for clinically realistic 18F-FDG PET/CT imaging case involving autosegmentation of whole-body PET/CT images. This study suggests that the proposed computing tools—ARCHER-NM— are accurate and fast enough for routine internal dosimetry in NM clinics.

Funder

New Medicine Team Project: The ROADMAP Medical Physics Platform

Med-X Medical Physics and Biomedical Engineering Interdisciplinary Subjects” Strategic Priority Research Program

Natural Science Foundation of Anhui Province, China

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3