Evaluating the image quality of combined positron emission tomography-magnetic resonance images acquired in the pelvic radiotherapy position

Author:

Wyatt Jonathan JORCID,Howell Elizabeth,Lohezic Maelene,McCallum Hazel M,Maxwell Ross J

Abstract

Abstract Positron emission tomography-magnetic resonance (PET-MR) scanners could improve radiotherapy planning through combining PET and MR functional imaging. This depends on acquiring high quality and quantitatively accurate images in the radiotherapy position. This study evaluated PET-MR image quality using a flat couch and coil bridge for pelvic radiotherapy. MR and PET image quality phantoms were imaged in three setups: phantom on the PET-MR couch with anterior coil on top (diagnostic), phantom on a flat couch with coil on top (couch), and phantom on the flat couch with coil on a coil bridge (radiotherapy). PET images were also acquired in each setup without the anterior coil. PET attenuation correction of the flat couch and coil bridge were generated using kilovoltage computed tomography (CT) images and of the anterior coil using megavoltage CT images. MR image quality was substantially affected, with MR signal to noise ratio (SNR) relative to the diagnostic setup of 89% ± 2% (mean ± standard error of the mean, couch) and 54% ± 1% (radiotherapy), likely due to the increased distance between the patient and receive coils. The reduction impacted the low-contrast detectability score: 23 ± 1 (diagnostic), 19.7 ± 0.3 (couch) and 15 ± 1 (radiotherapy). All other MR metrics agreed within one standard error. PET quantitative accuracy was also affected, with measured activity with anterior coil being different to diagnostic without anterior coil by −16.7% ± 0.2% (couch) and −17.7 ± 0.1% (radiotherapy), without attenuation correction modification. Including the couch and coil bridge attenuation correction reduced this difference to −7.5% ± 0.1%, and including the anterior coil reduced this to −2.7% ± 0.1%. This was better than the diagnostic setup with anterior coil (difference −8.3% ± 0.2%). This translated into greater PET SNR performance for the fully corrected radiotherapy setup compared to diagnostic with coil. However contrast recovery was unchanged by the modified attenuation correction, with the diagnostic setup remaining ∼2% better. Quantitative PET in the radiotherapy setup is possible if appropriate attenuation correction is used. Pelvic radiotherapy PET-MR imaging protocols will need to consider the impact on PET-MR image quality.

Funder

GE Healthcare

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference24 articles.

1. Multi-modality functional image guided dose escalation in the presence of uncertainties;Alber;Radiother. Oncol.,2014

2. Technical Note: Adapting a GE SIGNA PET/MR scanner for radiotherapy;Brynolfsson;Med. Phys.,2018

3. PET performance measurements using the NEMA NU 2-2001 standard;Daube-Witherspoon;J. Nucl. Med.,2002

4. NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system;Grant;Med. Phys.,2016

5. RF coils: a practical guide for nonphysicists;Gruber;J. Magn. Reson. Imaging,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3