Real-time liver tumor localization via a single x-ray projection using deep graph neural network-assisted biomechanical modeling

Author:

Shao Hua-Chieh,Wang JingORCID,Bai TiORCID,Chun JaeheeORCID,Park Justin C,Jiang Steve,Zhang YouORCID

Abstract

Abstract Objective. Real-time imaging is highly desirable in image-guided radiotherapy, as it provides instantaneous knowledge of patients’ anatomy and motion during treatments and enables online treatment adaptation to achieve the highest tumor targeting accuracy. Due to extremely limited acquisition time, only one or few x-ray projections can be acquired for real-time imaging, which poses a substantial challenge to localize the tumor from the scarce projections. For liver radiotherapy, such a challenge is further exacerbated by the diminished contrast between the tumor and the surrounding normal liver tissues. Here, we propose a framework combining graph neural network-based deep learning and biomechanical modeling to track liver tumor in real-time from a single onboard x-ray projection. Approach. Liver tumor tracking is achieved in two steps. First, a deep learning network is developed to predict the liver surface deformation using image features learned from the x-ray projection. Second, the intra-liver deformation is estimated through biomechanical modeling, using the liver surface deformation as the boundary condition to solve tumor motion by finite element analysis. The accuracy of the proposed framework was evaluated using a dataset of 10 patients with liver cancer. Main results. The results show accurate liver surface registration from the graph neural network-based deep learning model, which translates into accurate, fiducial-less liver tumor localization after biomechanical modeling (<1.2 (±1.2) mm average localization error). Significance. The method demonstrates its potentiality towards intra-treatment and real-time 3D liver tumor monitoring and localization. It could be applied to facilitate 4D dose accumulation, multi-leaf collimator tracking and real-time plan adaptation. The method can be adapted to other anatomical sites as well.

Funder

University of Texas Southwestern Medical Center

National Institutes of Health

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3