Feasibility of using a dual isocentre technique for treating cervical cancer on the 1.5 T MR-Linac

Author:

Chuter Robert W,Brewster FrankORCID,Retout Louise,Cree Anthea,Aktürk Nesrin,Hales Rosie,Benson Rebecca,Hoskin Peter,McWilliam Alan

Abstract

Abstract Objective. Patients treated for cervical cancer exhibit large inter and intra-fraction anatomical changes. The Unity MR-Linac (MRL) can image these patients with MR prior to and during treatment which enables daily plan adaptation. However, the MRL has a limited treatment field in the sup/inf direction of 22 cm which can restrict the treatment of patients who require longer treatment fields. Here we explore potential adaptive workflows in combination with a dual isocentre approach, to widen the range of cervix patients that can benefit from this treatment. Approach. Ten cervical cancer patients were retrospectively planned with a dual isocentre technique to deliver 45 Gy in 25 fractions. 5 node-negative and 5 node-positive patients were planned using the EMBRACE II protocol. A 2 cm overlap region between the two isocentres was positioned entirely in the nodal region. A treatment workflow was simulated to account for inter-fraction anatomical change. Isocentre shifts of 3 and 6 mm were applied to investigate the effect of intra-fraction motion. Main results. Dual isocentre adapted plans ensured significantly better coverage than non-adapted (recalculated) plans with a larger benefit seen for the node-negative cases. The difference to the reference plan for the V4275 cGy to the ITV was −0.8 cGy and −8.2 cGy for the adapted and recalculated plans respectively. Movements superiorly did not affect the coverage of the ITV by more than 1%, but shifting it inferiorly caused the ITV coverage on the plan to reduce by ∼2.4% per mm. Significance. A dual isocentre technique for cervical cancer treatments and adaptive workflows have been demonstrated to recover the required plan quality for inter-fraction changes. This illustrates the feasibility of a dual isocentre technique for the MRL.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3