Estimating the mechanical energy of histotripsy bubble clouds with high frame rate imaging

Author:

Bader Kenneth B,Wallach Emily L,Shekhar Himanshu,Flores-Guzman Fernando,Halpern Howard J,Hernandez Sonia L

Abstract

Abstract Mechanical ablation with the focused ultrasound therapy histotripsy relies on the generation and action of bubble clouds. Despite its critical role for ablation, quantitative metrics of bubble activity to gauge treatment outcomes are still lacking. Here, plane wave imaging was used to track the dissolution of bubble clouds following initiation with the histotripsy pulse. Information about the rate of change in pixel intensity was coupled with an analytic diffusion model to estimate bubble size. Accuracy of the hybrid measurement/model was assessed by comparing the predicted and measured dissolution time of the bubble cloud. Good agreement was found between predictions and measurements of bubble cloud dissolution times in agarose phantoms and murine subcutaneous SCC VII tumors. The analytic diffusion model was extended to compute the maximum bubble size as well as energy imparted to the tissue due to bubble expansion. Regions within tumors predicted to have undergone strong bubble expansion were collocated with ablation. Further, the dissolution time was found to correlate with acoustic emissions generated by the bubble cloud during histotripsy insonation. Overall, these results indicate a combination of modeling and high frame rate imaging may provide means to quantify mechanical energy imparted to the tissue due to bubble expansion for histotripsy.

Funder

University of Chicago Comprehensive Cancer Center

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3