Limitations of phase-sorting based pencil beam scanned 4D proton dose calculations under irregular motion

Author:

Duetschler AORCID,Prendi J,Safai S,Weber D C,Lomax A J,Zhang YeORCID

Abstract

Abstract Objective. 4D dose calculation (4DDC) for pencil beam scanned (PBS) proton therapy is typically based on phase-sorting of individual pencil beams onto phases of a single breathing cycle 4DCT. Understanding the dosimetric limitations and uncertainties of this approach is essential, especially for the realistic treatment scenario with irregular free breathing motion. Approach. For three liver and three lung cancer patient CTs, the deformable multi-cycle motion from 4DMRIs was used to generate six synthetic 4DCT(MRI)s, providing irregular motion (11/15 cycles for liver/lung; tumor amplitudes ∼4–18 mm). 4DDCs for two-field plans were performed, with the temporal resolution of the pencil beam delivery (4–200 ms) or with 8 phases per breathing cycle (500–1000 ms). For the phase-sorting approach, the tumor center motion was used to determine the phase assignment of each spot. The dose was calculated either using the full free breathing motion or individually repeating each single cycle. Additionally, the use of an irregular surrogate signal prior to 4DDC on a repeated cycle was simulated. The CTV volume with absolute dose differences >5% (V dosediff>5%) and differences in CTV V 95% and D 5%D 95% compared to the free breathing scenario were evaluated. Main results. Compared to 4DDC considering the full free breathing motion with finer spot-wise temporal resolution, 4DDC based on a repeated single 4DCT resulted in V dosediff>5% of on average 34%, which resulted in an overestimation of V 95% up to 24%. However, surrogate based phase-sorting prior to 4DDC on a single cycle 4DCT, reduced the average V dosediff>5% to 16% (overestimation V 95% up to 19%). The 4DDC results were greatly influenced by the choice of reference cycle (V dosediff>5% up to 55%) and differences due to temporal resolution were much smaller (V dosediff>5% up to 10%). Significance. It is important to properly consider motion irregularity in 4D dosimetric evaluations of PBS proton treatments, as 4DDC based on a single 4DCT can lead to an underestimation of motion effects.

Funder

Swiss Cancer Research Foundation

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3