Coronary vessel segmentation in coronary angiography with a multi-scale U-shaped transformer incorporating boundary aggregation and topology preservation

Author:

Wang Guangpu,Zhou Peng,Gao Hui,Qin Zewei,Wang ShuoORCID,Sun Jinglai,Yu HuiORCID

Abstract

Abstract Coronary vessel segmentation plays a pivotal role in automating the auxiliary diagnosis of coronary heart disease. The continuity and boundary accuracy of the segmented vessels directly affect the subsequent processing. Notably, during segmentation, vessels with severe stenosis can easily cause boundary errors and breakage, resulting in isolated islands. To address these issues, we propose a novel multi-scale U-shaped transformer with boundary aggregation and topology preservation (UT-BTNet) for coronary vessel segmentation in coronary angiography. Specifically, considering the characteristics of coronary vessels, we first develop the UT-BTNet for coronary vessels segmentation, which combines the advantages of a convolutional neural networks (CNN) and a transformer, and is able to effectively extract the local and global features of angiographic images. Secondly, we innovatively employ boundary loss and topological loss in two stages, in addition to the traditional losses. In the first stage, boundary loss is adopted, which has the effect of boundary aggregation. In the second stage, topological loss is applied to preserve the topology of the vessels, after the network converges. In the experiment, in addition to the two metrics of Dice and intersection over union (IoU), we specifically propose two metrics of boundary intersection over union (BIoU) and Betti error to evaluate boundary accuracy and the continuity of segmentation results. The results show that the Dice is 0.9291, the IoU is 0.8687, the BIoU is 0.5094, and the Betti error is 0.3400. Compared with the other state-of-the-art methods, UT-BTNet achieves better segmentation results, while ensuring the continuity and boundary accuracy of the vessels, indicating its potential clinical value.

Funder

Tianjin Major Science & Technology Specific Projects of China

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference48 articles.

1. A review on the use of deep learning for medical images segmentation;Aljabri;Neurocomputing,2022

2. An integral solution to surface evolution PDEs via geo-cuts;Boykov,2006

3. A topological loss function for deep-learning based image segmentation using persistent homology;Clough;IEEE Trans. Pattern Anal. Mach. Intell.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3