LVONet: automatic classification model for large vessel occlusion based on the difference information between left and right hemispheres

Author:

Ma YuqiORCID,Chen Shanxiong,Xiong Hailing,Yao Rui,Zhang Wang,Yuan Jiang,Duan Haowei

Abstract

Abstract Objective. Stroke is a highly lethal condition, with intracranial vessel occlusion being one of its primary causes. Intracranial vessel occlusion can typically be categorized into four types, each requiring different intervention measures. Therefore, the automatic and accurate classification of intracranial vessel occlusions holds significant clinical importance for assessing vessel occlusion conditions. However, due to the visual similarities in shape and size among different vessels and variations in the degree of vessel occlusion, the automated classification of intracranial vessel occlusions remains a challenging task. Our study proposes an automatic classification model for large vessel occlusion (LVO) based on the difference information between the left and right hemispheres. Approach. Our approach is as follows. We first introduce a dual-branch attention module to learn long-range dependencies through spatial and channel attention, guiding the model to focus on vessel-specific features. Subsequently, based on the symmetry of vessel distribution, we design a differential information classification module to dynamically learn and fuse the differential information of vessel features between the two hemispheres, enhancing the sensitivity of the classification model to occluded vessels. To optimize the feature differential information among similar vessels, we further propose a novel cooperative learning loss function to minimize changes within classes and similarities between classes. Main results. We evaluate our proposed model on an intracranial LVO data set. Compared to state-of-the-art deep learning models, our model performs optimally, achieving a classification sensitivity of 93.73%, precision of 83.33%, accuracy of 89.91% and Macro-F1 score of 87.13%. Significance. This method can adaptively focus on occluded vessel regions and effectively train in scenarios with high inter-class similarity and intra-class variability, thereby improving the performance of LVO classification.

Funder

Project of Chongqing Municipal Education Commission Science and Technology Research

Fundamental Research Funds for the Central Universities of China

Projects of Chongqing Science and Technology Bureau

Project of Chongqing Ecological Environment Big Data Application Center

Project of Southwest University Graduate Student Research

Project of Chongqing Science and Technology Bureau

Chongqing Natural Science Foundation Innovation and Development Joint Fund

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3