Strategies and safety simulations for ultrasonic cervical spinal cord neuromodulation

Author:

Xu RuiORCID,Bestmann SvenORCID,Treeby Bradley EORCID,Martin EleanorORCID

Abstract

Abstract Objective. Focused ultrasound spinal cord neuromodulation has been demonstrated in small animals. However, most of the tested neuromodulatory exposures are similar in intensity and exposure duration to the reported small animal threshold for possible spinal cord damage. All efforts must be made to minimize the risk and assure the safety of potential human studies, while maximizing potential treatment efficacy. This requires an understanding of ultrasound propagation and heat deposition within the human spine. Approach. Combined acoustic and thermal modelling was used to assess the pressure and heat distributions produced by a 500 kHz source focused to the C5/C6 level via two approaches (a) the posterior acoustic window between vertebral posterior arches, and (b) the lateral intervertebral foramen from which the C6 spinal nerve exits. Pulse trains of fifty 0.1 s pulses (pulse repetition frequency: 0.33 Hz, free-field spatial peak pulse-averaged intensity: 10 W cm−2) were simulated for four subjects and for ±10 mm translational and ±10 rotational source positioning errors. Main results. Target pressures ranged between 20%–70% of free-field spatial peak pressures with the posterior approach, and 20%–100% with the lateral approach. When the posterior source was optimally positioned, peak spine heating values were below 1 C, but source mispositioning resulted in bone heating up to 4 C. Heating with the lateral approach did not exceed 2 C within the mispositioning range. There were substantial inter-subject differences in target pressures and peak heating values. Target pressure varied three to four-fold between subjects, depending on approach, while peak heating varied approximately two-fold between subjects. This results in a nearly ten-fold range between subjects in the target pressure achieved per degree of maximum heating. Significance. This study highlights the utility of trans-spine ultrasound simulation software and need for precise source-anatomy positioning to assure the subject-specific safety and efficacy of focused ultrasound spinal cord therapies.

Funder

UKRI Future Leaders Fellowship

Wellcome/EPSRC Centre for Interventional and Surgical Sciences

EPSRC, UK

Ministry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3