OPTIma: simplifying calorimetry for proton computed tomography in high proton flux environments

Author:

Winter AORCID,Vorselaars BORCID,Esposito MORCID,Badiee A,Price T,Allport P,Allinson N

Abstract

Abstract Objective. Proton computed tomography (pCT) offers a potential route to reducing range uncertainties for proton therapy treatment planning, however the current trend towards high current spot scanning treatment systems leads to high proton fluxes which are challenging for existing systems. Here we demonstrate a novel approach to energy reconstruction, referred to as ‘de-averaging’, which allows individual proton energies to be recovered using only a measurement of their integrated energy without the need for spatial information from the calorimeter. Approach. The method is evaluated in the context of the Optimising Proton Therapy through Imaging (OPTIma) system which uses a simple, relatively inexpensive, scintillator-based calorimeter that reports only the integrated energy deposited by all protons within a cyclotron period, alongside a silicon strip based tracking system capable of reconstructing individual protons in a high flux environment. GEANT4 simulations have been performed to examine the performance of such a system at a modern commercial cyclotron facility using a σ ≈ 10 mm beam for currents in the range 10–50 pA at the nozzle. Main results. Apart from low-density lung tissue, a discrepancy of less than 1% on the Relative Stopping Power is found for all other considered tissues when embedded within a 150 mm spherical Perspex phantom in the 10–30 pA current range, and for some tissues even up to 50 pA. Significance. By removing the need for the calorimeter system to provide spatial information, it is hoped that the de-averaging approach can facilitate clinically relevant, cost effective and less complex calorimeter systems for performing high current pCTs.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Reference18 articles.

1. Geant4—a simulation toolkit;Agostinelli;Nucl. Instrum. Methods Phys. Res.,2003

2. Recent developments in geant4;Allison;Nucl. Instrum. Methods Phys. Res.,2016

3. A high-granularity digital tracking calorimeter optimized for proton ct;Alme;Front. Phys.,2020

4. impact: an innovative tracker and calorimeter for proton computed tomography;Baruffaldi;IEEE Trans. Radiat. Plasma Med. Sci.,2018

5. Proton beam therapy: perspectives on the national health service england clinical service and research programme;Burnet;Br. J. Radiol.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3