Abstract
Abstract
The nonperfused volume (NPV) ratio is the key to the success of high intensity focused ultrasound (HIFU) ablation treatment of adenomyosis. However, there are no qualitative interpretation standards for predicting the NPV ratio of adenomyosis using magnetic resonance imaging (MRI) before HIFU ablation treatment, which leading to inter-reader variability. Convolutional neural networks (CNNs) have achieved state-of-the-art performance in the automatic disease diagnosis of MRI. Since the use of HIFU to treat adenomyosis is a novel treatment, there is not enough MRI data to support CNNs. We proposed a novel few-shot learning framework that extends CNNs to predict NPV ratio of HIFU ablation treatment for adenomyosis. We collected a dataset from 208 patients with adenomyosis who underwent MRI examination before and after HIFU treatment. Our proposed method was trained and evaluated by fourfold cross validation. This framework obtained sensitivity of 85.6%, 89.6% and 92.8% at 0.799, 0.980 and 1.180 FPs per patient. In the receiver operating characteristics analysis for NPV ratio of adenomyosis, our proposed method received the area under the curve of 0.8233, 0.8289, 0.8412, 0.8319, 0.7010, 0.7637, 0.8375, 0.8219, 0.8207, 0.9812 for the classifications of NPV ratio interval [0%–10%), [10%–20%), …, [90%–100%], respectively. The present study demonstrated that few-shot learning on NPV ratio prediction of HIFU ablation treatment for adenomyosis may contribute to the selection of eligible patients and the pre-judgment of clinical efficacy.
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献