Deep learning based automatic contour refinement for inaccurate auto-segmentation in MR-guided adaptive radiotherapy

Author:

Ding JieORCID,Zhang Ying,Amjad Asma,Sarosiek ChristinaORCID,Dang Nguyen Phuong,Zarenia Mohammad,Li X AllenORCID

Abstract

Abstract Objective. Fast and accurate auto-segmentation is essential for magnetic resonance-guided adaptive radiation therapy (MRgART). Deep learning auto-segmentation (DLAS) is not always clinically acceptable, particularly for complex abdominal organs. We previously reported an automatic contour refinement (ACR) solution of using an active contour model (ACM) to partially correct the DLAS contours. This study aims to develop a DL-based ACR model to work in conjunction with ACM-ACR to further improve the contour accuracy. Approach. The DL-ACR model was trained and tested using bowel contours created by an in-house DLAS system from 160 MR sets (76 from MR-simulation and 84 from MR-Linac). The contours were classified into acceptable, minor-error and major-error groups using two approaches of contour quality classification (CQC), based on the AAPM TG-132 recommendation and an in-house classification model, respectively. For the major-error group, DL-ACR was applied subsequently after ACM-ACR to further refine the contours. For the minor-error group, contours were directly corrected by DL-ACR without applying an initial ACM-ACR. The ACR workflow was performed separately for the two CQC methods and was evaluated using contours from 25 image sets as independent testing data. Main results. The best ACR performance was observed in the MR-simulation testing set using CQC by TG-132: (1) for the major-error group, 44% (177/401) were improved to minor-error group and 5% (22/401) became acceptable by applying ACM-ACR; among these 177 contours that shifted from major-error to minor-error with ACM-ACR, DL-ACR further refined 49% (87/177) to acceptable; and overall, 36% (145/401) were improved to minor-error contours, and 30% (119/401) became acceptable after sequentially applying ACM-ACR and DL-ACR; (2) for the minor-error group, 43% (320/750) were improved to acceptable contours using DL-ACR. Significance. The obtained ACR workflow substantially improves the accuracy of DLAS bowel contours, minimizing the manual editing time and accelerating the segmentation process of MRgART.

Funder

US NIH/NCI

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3