Affine medical image registration with fusion feature mapping in local and global

Author:

Ji WeiORCID,Yang FengORCID

Abstract

Abstract Objective. Medical image affine registration is a crucial basis before using deformable registration. On the one hand, the traditional affine registration methods based on step-by-step optimization are very time-consuming, so these methods are not compatible with most real-time medical applications. On the other hand, convolutional neural networks are limited in modeling long-range spatial relationships of the features due to inductive biases, such as weight sharing and locality. This is not conducive to affine registration tasks. Therefore, the evolution of real-time and high-accuracy affine medical image registration algorithms is necessary for registration applications. Approach. In this paper, we propose a deep learning-based coarse-to-fine global and local feature fusion architecture for fast affine registration, and we use an unsupervised approach for end-to-end training. We use multiscale convolutional kernels as our elemental convolutional blocks to enhance feature extraction. Then, to learn the long-range spatial relationships of the features, we propose a new affine registration framework with weighted global positional attention that fuses global feature mapping and local feature mapping. Moreover, the fusion regressor is designed to generate the affine parameters. Main results. The additive fusion method can be adaptive to global mapping and local mapping, which improves affine registration accuracy without the center of mass initialization. In addition, the max pooling layer and the multiscale convolutional kernel coding module increase the ability of the model in affine registration. Significance. We validate the effectiveness of our method on the OASIS dataset with 414 3D MRI brain maps. Comprehensive results demonstrate that our method achieves state-of-the-art affine registration accuracy and very efficient runtimes.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3