Design and performance of SIAT aPET: a uniform high-resolution small animal PET scanner using dual-ended readout detectors

Author:

Kuang ZhonghuaORCID,Wang Xiaohui,Ren Ning,Wu San,Gao Juan,Zeng Tianyi,Gao Dongfang,Zhang Chunhui,Sang Ziru,Hu ZhanliORCID,Du JunweiORCID,Liang DongORCID,Liu Xin,Zheng Hairong,Yang Yongfeng

Abstract

Abstract In this work, a small animal PET scanner named SIAT aPET was developed using dual-ended readout depth encoding detectors to simultaneously achieve high spatial resolution and high sensitivity. The scanner consists of four detector rings with 12 detector modules per ring; the ring diameter is 111 mm and the axial field of view (FOV) is 105.6 mm. The images are reconstructed using an ordered subset expectation maximization (OSEM) algorithm. The spatial resolution of the scanner was measured by using a 22Na point source at the center axial FOV with different radial offsets. The sensitivity of the scanner was measured at center axis of the scanner with different axial positions. The count rate performance of the system was evaluated by scanning mouse-sized and rat-sized phantoms. An ultra-micro hot-rods phantom and two mice injected with 18F-NaF and 18F-FDG were scanned on the scanner. An average depth of interaction (DOI) resolution of 1.96 mm, energy resolution of 19.1% and timing resolution of 1.20 ns were obtained for the detector. Average spatial resolutions of 0.82 mm and 1.16 mm were obtained up to a distance of 30 mm radially from the center of the FOV when reconstructing a point source in 1% and 10% warm backgrounds, respectively, using OSEM reconstruction with 16 subsets and 10 iterations. Sensitivities of 16.0% and 11.9% were achieved at center of the scanner for energy windows of 250–750 keV and 350–750 keV respectively. Peak noise equivalent count rates (NECRs) of 324 kcps and 144 kcps were obtained at an activity of 26.4 MBq for the mouse-sized and rat-sized phantoms. Rods of 1.0 mm diameter can be visually resolved from the image of the ultra-micro hot-rods phantom. The capability of the scanner was demonstrated by high quality in-vivo mouse images.

Funder

Basic Research Program of Shenzhen

National Natural Science Foundation of China

Chinese Academy of Sciences Engineering Laboratory for Medical Imaging Technology and Equipment

Scientific Instrument Innovation Team of Chinese Academy of Sciences

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Generalized Learning Model for PET Image Reconstruction;IEEE Transactions on Medical Imaging;2024-01

2. Tracking a moving point source using triple gamma imaging;Journal of Instrumentation;2024-01-01

3. Mapping whole brain effects of infrared neural stimulation with positron emission tomography;Imaging Neuroscience;2023-12

4. Effect of depth of interaction resolution on the spatial resolution of SIAT aPET;Physics in Medicine & Biology;2023-11-10

5. Fast Reconstruction Enhances Deep Learning PET Head Motion Correction;2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International Symposium on Room-Temperature Semiconductor Detectors (NSS MIC RTSD);2023-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3