Atlas construction and spatial normalisation to facilitate radiation-induced late effects research in childhood cancer

Author:

Veiga CatarinaORCID,Lim PeiORCID,Anaya Virginia MarinORCID,Chandy EdwardORCID,Ahmad ReemORCID,D’Souza DerekORCID,Gaze MarkORCID,Moinuddin Syed,Gains Jennifer

Abstract

Abstract Reducing radiation-induced side effects is one of the most important challenges in paediatric cancer treatment. Recently, there has been growing interest in using spatial normalisation to enable voxel-based analysis of radiation-induced toxicities in a variety of patient groups. The need to consider three-dimensional distribution of doses, rather than dose-volume histograms, is desirable but not yet explored in paediatric populations. In this paper, we investigate the feasibility of atlas construction and spatial normalisation in paediatric radiotherapy. We used planning computed tomography (CT) scans from twenty paediatric patients historically treated with craniospinal irradiation to generate a template CT that is suitable for spatial normalisation. This childhood cancer population representative template was constructed using groupwise image registration. An independent set of 53 subjects from a variety of childhood malignancies was then used to assess the quality of the propagation of new subjects to this common reference space using deformable image registration (i.e. spatial normalisation). The method was evaluated in terms of overall image similarity metrics, contour similarity and preservation of dose-volume properties. After spatial normalisation, we report a dice similarity coefficient of 0.95 ± 0.05, 0.85 ± 0.04, 0.96 ± 0.01, 0.91 ± 0.03, 0.83 ± 0.06 and 0.65 ± 0.16 for brain and spinal canal, ocular globes, lungs, liver, kidneys and bladder. We then demonstrated the potential advantages of an atlas-based approach to study the risk of second malignant neoplasms after radiotherapy. Our findings indicate satisfactory mapping between a heterogeneous group of patients and the template CT. The poorest performance was for organs in the abdominal and pelvic region, likely due to respiratory and physiological motion and to the highly deformable nature of abdominal organs. More specialised algorithms should be explored in the future to improve mapping in these regions. This study is the first step toward voxel-based analysis in radiation-induced toxicities following paediatric radiotherapy.

Funder

Cancer Research UK

Royal Academy of Engineering

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3