Dermoscopy lesion classification based on GANs and a fuzzy rank-based ensemble of CNN models

Author:

Li HaiyanORCID,Li Wenqing,Chang Jun,Zhou Liping,Luo Jin,Guo Yifan

Abstract

Abstract Background and Objective. Skin lesion classification by using deep learning technologies is still a considerable challenge due to high similarity among classes and large intraclass differences, serious class imbalance in data, and poor classification accuracy with low robustness. Approach. To address these issues, a two-stage framework for dermoscopy lesion classification using adversarial training and a fuzzy rank-based ensemble of multilayer feature fusion convolutional neural network (CNN) models is proposed. In the first stage, dermoscopy dataset augmentation based on generative adversarial networks is proposed to obtain realistic dermoscopy lesion images, enabling significant improvement for balancing the number of lesions in each class. In the second stage, a fuzzy rank-based ensemble of multilayer feature fusion CNN models is proposed to classify skin lesions. In addition, an efficient channel integrating spatial attention module, in which a novel dilated pyramid pooling structure is designed to extract multiscale features from an enlarged receptive field and filter meaningful information of the initial features. Combining the cross-entropy loss function with the focal loss function, a novel united loss function is designed to reduce the intraclass sample distance and to focus on difficult and error-prone samples to improve the recognition accuracy of the proposed model. Main results. In this paper, the common dataset (HAM10000) is selected to conduct simulation experiments to evaluate and verify the effectiveness of the proposed method. The subjective and objective experimental results demonstrate that the proposed method is superior over the state-of-the-art methods for skin lesion classification due to its higher accuracy, specificity and robustness. Significance. The proposed method effectively improves the classification performance of the model for skin diseases, which will help doctors make accurate and efficient diagnoses, reduce the incidence rate and improve the survival rates of patients.

Funder

“Famous teacher of teaching” of Yunnan 10000 Talents Program, major science and technology project of Yunnan Province

The National Natura Science Foundation of China under Grants

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3