A study of the impact of x-ray tube performance on angiography system imaging efficiency

Author:

Dehairs M,Bosmans H,Marshall N W

Abstract

Abstract This work compared the impact of x-ray tube performance and automatic dose rate control (ADRC) parameter selection on system imaging efficiency of two Siemens angiography systems: a Siemens Megalix x-ray tube installed on an Artis Zee system (denoted ‘MEGALIX’) and a newer generation Gigalix x-ray tube installed on an Artis Q (denoted ‘GIGALIX’). A method was used that accounted for two potential sources of bias in this comparison: differences in radiation output between the x-ray tubes and differences between the x-ray detectors on the two systems. First, ADRC x-ray factors (tube voltage, tube current, pulse length, focus size, spectral prefilter) and radiation output were recorded as a function of poly(methyl) methacrylate (PMMA) thickness on the MEGALIX unit. These factors were then applied manually on the GIGALIX system and incident air kerma rate (IAKR) and signal difference to noise ratio (SDNR) were measured. Second, the ADRC on the GIGALIX system was used to give the x-ray factors and both IAKR and SDNR relevant to the GIGALIX based system directly. This method enabled the SDNR to be measured from images acquired on the same x-ray detector. SDNR and IAKR were measured on both systems using a PMMA phantom covering thicknesses from 6 cm to 40 cm. A small 0.3 mm iron insert was used to measure SDNR, which was then multiplied by modulation transfer function based weighting factors for focal spot blurring and motion blurring. These factors were evaluated for an object motion of 25 mm s−1 and at a spatial frequency of 1.4 mm−1 in the object plane, relevant to interventional cardiology, giving a spatial frequency dependent SDNR(u). In the second phase of the study, a technical figure of merit (FOM) was used to express imaging performance of both systems, calculated as SDNR2(u)/IAKR. Averaged over all phantom thicknesses, the FOM of the GIGALIX-based system was 42% and 73% higher compared to that of the MEGALIX based system, for fluoroscopy and acquisition mode respectively. The results indicate that increased x-ray tube power and smaller foci can improve overall system efficiency and reduce doses.

Funder

Siemens Healthineers

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference46 articles.

1. Functionality and operation of fluoroscopic automatic brightness control/automatic dose rate control logic in modern cardiovascular and interventional angiography systems,2012

2. Comparison of low contrast detectability between a digital amorphous silicon and a screen-film based imaging system for thoracic radiography;Aufrichtig;Med. Phys.,1999

3. MO‐F‐141‐01: X‐ray tubes for medical imaging;Behling;Med. Phys.,2013

4. Medical x-ray sources now and for the future;Behling;Nucl. Instrum. Methods Phys. Res. A,2017

5. Spatial frequency-dependent signal-to-noise ratio as a generalized measure of image quality;Bernhardt;Proc. SPIE,2005

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3