Performance evaluation of digital breast tomosynthesis systems: physical methods and experimental data

Author:

Marshall N WORCID,Bosmans H

Abstract

Abstract Digital breast tomosynthesis (DBT) has become a well-established breast imaging technique, whose performance has been investigated in many clinical studies, including a number of prospective clinical trials. Results from these studies generally point to non-inferiority in terms of microcalcification detection and superior mass-lesion detection for DBT imaging compared to digital mammography (DM). This modality has become an essential tool in the clinic for assessment and ad-hoc screening but is not yet implemented in most breast screening programmes at a state or national level. While evidence on the clinical utility of DBT has been accumulating, there has also been progress in the development of methods for technical performance assessment and quality control of these imaging systems. DBT is a relatively complicated ‘pseudo-3D’ modality whose technical assessment poses a number of difficulties. This paper reviews methods for the technical performance assessment of DBT devices, starting at the component level in part one and leading up to discussion of system evaluation with physical test objects in part two. We provide some historical and basic theoretical perspective, often starting from methods developed for DM imaging. Data from a multi-vendor comparison are also included, acquired under the medical physics quality control protocol developed by EUREF and currently being consolidated by a European Federation of Organisations for Medical Physics working group. These data and associated methods can serve as a reference for the development of reference data and provide some context for clinical studies.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3