Development and optimisation of grid inserts for a preclinical radiotherapy system and corresponding Monte Carlo beam simulations

Author:

Fisk MarcusORCID,Rowshanfarzad PejmanORCID,Pfefferlé DavidORCID,Fernandez de Viana Matthew,Cabrera Julian,Ebert Martin AORCID

Abstract

Abstract Objective. To develop a physical grid collimator compatible with the X-RAD preclinical radiotherapy system and create a corresponding Monte Carlo (MC) model. Approach. This work presents a methodology for the fabrication of a grid collimator designed for utilisation on the X-RAD preclinical radiotherapy system. Additionally, a MC simulation of the grid is developed, which is compatible with the X-RAD treatment planning system. The grid was manufactured by casting a low melting point alloy, cerrobend, into a silicone mould. The silicone was moulded around a 3D-printed replica of the grid, enabling the production of diverging holes with precise radii and spacing. A MC simulation was conducted on an equivalent 3D grid model and validated using 11 layers of GAFChromic EBT-3 film interspersed in a 3D-printed water-equivalent phantom. A 3D dose distribution was constructed from the film layers, enabling a direct comparison with the MC Simulation. Main results. The film and the MC dose distribution demonstrated a gamma passing rate of 99% for a 1%, 0.5 mm criteria with a 10% threshold applied. The peak-to-valley dose ratio and output factor at the surface were determined to be 20.4 and 0.79, respectively. Significance. The pairing of the grid collimator with a MC simulation can significantly enhance the practicality of grid therapy on the X-RAD. This combination enables further exploration of the biological implications of grid therapy, supported by a knowledge of the complex dose distributions. Moreover, this methodology can be adapted for use in other systems and scenarios.

Funder

Merit Award fellowship

Cancer Australia Priority driven Collaborative Cancer Research Scheme

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3