A feasibility study on removing lipid deposition in atherosclerotic plaques with ultrasound-assisted laser ablation

Author:

Singh Rohit,Ebersole Koji C,Yang Xinmai

Abstract

Abstract Objective. Atherosclerosis is the buildup of fats, cholesterol, and other substances on the inner walls of arteries. It can affect arteries of heart, brain, arms, legs, pelvis and kidney, resulting in ischemic heart disease, carotid artery disease, peripheral artery disease and chronic kidney disease. Laser-based treatment techniques like laser atherectomy can be used to treat many common atherosclerostic diseases. However, the use of laser-based treatment remains limited due to the high risk of complications and low efficiency in removing atherosclerostic plaques as compared with other treatment methods. In this study, we developed a technology that used high intensity focused ultrasound to assist laser treatment in the removal of the lipid core of atherosclerotic plaques. Approach. The fundamental mechanism to disrupt atherosclerostic plaque was to enhance the mechanical effect of cavitation during laser/ultrasound therapy. To promote cavitation, spatiotemporally synchronized ultrasound bursts of 2% duty cycle at 0.5 MHz and nanosecond laser pulses at 532 nm wavelength were used. Experiments were first performed on pig belly fat samples to titrate ultrasound and laser parameters. Then, experiments were conducted on human plaque samples, where the lipid depositions of the plaques were targeted. Main results. Our results showed that fat tissue could be removed with an ultrasound peak negative pressure (PNP) of 2.45 MPa and a laser radiant exposure as low as 3.2 mJ mm−2. The lipid depositions on the atherosclerostic plaques were removed with laser radiant exposure of 16 mJ mm−2 in synchronizing with an ultrasound PNP of 5.4 MPa. During all the experiments, laser-only and ultrasound-only control treatments at the same energy levels were not effective in removing the lipid. Significance. The results demonstrated that the addition of ultrasound could effectively reduce the needed laser power for atherosclerotic plaque removal, which will potentially improve treatment safety and efficiency of current laser therapies.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3