Abstract
Abstract
Objective. This study aims at investigating a novel super resolution CBCT imaging approach with a dual-layer flat panel detector (DL-FPD). Approach. With DL-FPD, the low-energy and high-energy projections acquired from the top and bottom detector layers contain over-sampled spatial information, from which super-resolution CT images can be reconstructed. A simple mathematical model is proposed to explain the signal formation procedure in DL-FPD, and a dedicated recurrent neural network, named suRi-Net, is developed based upon the above imaging model to nonlinearly retrieve the high-resolution dual-energy information. Physical benchtop experiments are conducted to validate the performance of this newly developed super-resolution CBCT imaging method. Main Results. The results demonstrate that the proposed suRi-Net can accurately retrieve high spatial resolution information from the low-energy and high-energy projections of low spatial resolution. Quantitatively, the spatial resolution of the reconstructed CBCT images from the top and bottom detector layers is increased by about 45% and 54%, respectively. Significance. In the future, suRi-Net will provide a new approach to perform high spatial resolution dual-energy imaging in DL-FPD-based CBCT systems.
Funder
National Natural Science Foundation of China
Youth Innovation Promotion Association of the Chinese Academy of Sciences
LingChuang Research Project of China National Nuclear Corporation
Guangdong Basic and Applied Basic Research Foundation
Shenzhen Science and Technology Program
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献