Investigation of TL and OSL detectors in ultra-high dose rate electron beams

Author:

Motta SORCID,Christensen J BORCID,Frei F,Peier P,Yukihara E GORCID

Abstract

Abstract Objective. This work aims at investigating the response of various thermally stimulated luminescence detectors (TLDs) and optically stimulated luminescence detectors (OSLDs) for dosimetry of ultra-high dose rate electron beams. The study was driven by the challenges of dosimetry at ultra-high dose rates and the importance of dosimetry for FLASH radiotherapy and radiobiology experiments. Approach. Three types of TLDs (LiF:Mg,Ti; LiF:Mg,Cu,P; CaF2:Tm) and one type of OSLD (Al2O3:C) were irradiated in a 15 MeV electron beam with instantaneous dose rates in the (1–324) kGy s−1 range. Reference dosimetry was carried out with an integrating current transformer, which was calibrated in absorbed dose to water against a reference ionization chamber. Additionally, dose rate independent BeO OSLDs were employed as a reference. Beam non-uniformity was addressed using a matrix of TLDs/OSLDs. Main results. The investigated TLDs were shown to be dose rate independent within the experimental uncertainties, which take into account the uncertainty of the dosimetry protocol and the irradiation uncertainty. The relative deviation between the TLDs and the reference dose was lower than 4 % for all dose rates. A decreasing response with the dose rate was observed for Al2O3:C OSLDs, but still within 10 % from the reference dose. Significance. The precision of the investigated luminescence detectors make them suitable for dosimetry of ultra-high dose rate electron beams. Specifically, the dose rate independence of the TLDs can support the investigation of the beam uniformity as a function of the dose rate, which is one of the challenges of the employed beam. Al2O3:C OSLDs provided high precision measurements, but the decreasing response with the dose rate needs to be confirmed by additional experiments.

Funder

Eidgenössisches Nuklearsicherheitsinspektorat

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3