A novel external/internal tumor tracking approach to compensate for respiratory motion baseline drifts

Author:

Giżyńska Marta KORCID,Seppenwoolde Yvette,Kilby Warren,Heijmen Ben JMORCID

Abstract

Abstract Objective. Real-time respiratory tumor tracking as implemented in a robotic treatment unit is based on continuous optical measurement of the position of external markers and a correlation model between them and internal target positions, which are established with X-ray imaging of the tumor, or fiducials placed in or around the tumor. Correlation models are created with fifteen simultaneously measured external/internal marker position pairs divided over the respiratory cycle. Every 45–150 s, the correlation model is updated by replacing the three first acquired data pairs with three new pairs. Tracking simulations for >120.000 computer-generated respiratory tracks demonstrated that this tracking approach resulted in relevant inaccuracies in internal target position predictions, especially in case of presence of respiratory motion baseline drifts. Approach. To better cope with drifts, we introduced a novel correlation model with an explicit time dependence, and we proposed to replace the currently applied linear-motion tracking (LMT) by mixed-model tracking (MMT). In MMT, the linear correlation model is extended with an explicit time dependence in case of a detected baseline drift. MMT prediction accuracies were then established for the same >120.000 computer-generated patients as used for LMT. Main results. For 150 s update intervals, MMT outperformed LMT in internal target position prediction accuracy for 93.7 ∣ 97.2% of patients with 0.25 ∣ 0.5 mm min−1 linear respiratory motion baseline drifts with similar numbers of X-ray images and similar treatment times. For the upper 25% of patients, mean 3D internal target position prediction errors reduced by 0.7 ∣ 1.8 mm, while near maximum reductions (upper 10% of patients) were 0.9 ∣ 2.0 mm. Significance. For equal numbers of acquired X-ray images, MMT greatly improved tracking accuracy compared to LMT, especially in the presence of baseline drifts. Even with almost 50% less acquired X-ray images, MMT still outperformed LMT in internal target position prediction accuracy.

Funder

Accuray

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3